Effective Thermal Conductivity of MOF-5 Powder under a Hydrogen Atmosphere
نویسندگان
چکیده
Effective thermal conductivity is an important thermophysical property in the design of metal-organic framework-5 (MOF-5)-based hydrogen storage tanks. A modified thermal conductivity model is built by coupling a theoretical model with the grand canonical Monte Carlo simulation (GCMC) to predict the effect of the H2 adsorption process on the effective thermal conductivity of a MOF-5 powder bed at pressures ranging from 0.01 MPa to 50 MPa and temperatures ranging from 273.15 K to 368.15 K. Results show that the mean pore diameter of the MOF-5 crystal decreases with an increase in pressure and increases with an increase in temperature. The thermal conductivity of the adsorbed H2 increases with an increased amount of H2 adsorption. The effective thermal conductivity of the MOF-5 crystal is significantly enhanced by the H2 adsorption at high pressure and low temperature. The effective thermal conductivity of the MOF-5 powder bed increases with an increase in pressure and remains nearly unchanged with an increase in temperature. The thermal conductivity of the MOF-5 powder bed increases linearly with the decreased porosity and increased thermal conductivity of the skeleton of the MOF-5 crystal. The variation in the effective thermal conductivities of the MOF-5 crystals and bed mainly results from the thermal conductivities of the gaseous and adsorption phases. OPEN ACCESS Computation 2015, 3 559
منابع مشابه
MOF-5 composites exhibiting improved thermal conductivity
The low thermal conductivity of the prototype hydrogen storage adsorbent, metal-organic framework 5 (MOF-5), can limit performance in applications requiring rapid gas uptake and release, such as in hydrogen storage for fuel cell vehicles. As a means to improve thermal conductivity, we have synthesized MOF-5-based composites containing 1e10 wt.% of expanded natural graphite (ENG) and evaluated t...
متن کاملIncreased volumetric hydrogen uptake of MOF-5 by powder densification
The metal-organic framework MOF-5 has attracted significant attention due to its ability to store large quantities of H2 by mass, up to 10 wt.% absolute at 70 bar and 77 K. On the other hand, sinceMOF-5 is typically obtained as a bulk powder, it exhibits a lowvolumetric density andpoor thermal conductivitydboth ofwhichareundesirable characteristics for ahydrogen storage material. Here we explor...
متن کاملThermophysical properties of MOF-5 powders
We present a comprehensive assessment of the thermophysical properties of an industrial, pilot-scale version of the prototype adsorbent, metal–organic framework 5 (MOF-5). These properties are essential ingredients in the design and modeling of MOF-5-based hydrogen adsorption systems, and may serve as a useful starting point for the development of other MOF-based systems for applications in cat...
متن کاملAnisotropic thermal transport in MOF-5 composites
Metal-organic frameworks (MOFs) are a new class of porous, crystalline materials with applications in the capture, storage, and separation of gasses. Although much effort has been devoted to understanding the properties of MOFs in powder form, in a realistic system the MOF media will likely be employed as dense compacts, such as pucks or pellets, to maximize volumetric efficiency. In these appl...
متن کاملMorphological and physical study of Cu-Ni sintered porous wicks used in heat pipes and fuel cells
Recently, the use of renewable energies has increased to environmental pollution, limitation of fossil energy resources and energy security One of the means that enable us to use such energies is fuel cells (FC). However, there are many problems in the commercialization of FC from an economically and operation perspective. One of the most important problems is heat management. New heat pipes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computation
دوره 3 شماره
صفحات -
تاریخ انتشار 2015